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One-dimensional compression of a collisionless gas 

By G. A.  BIRD 
Department of Mechanics of Fluids, University of Manchester 

(Received 30 April 1964) 

A highly rarefied gas, initially in equilibrium, is compressed by an infinite plane 
piston. The resulting flow is considered when the gas is unbounded and also when 
the gas is bounded by a second stationary wall. In  the first case, the density 
ahead of the piston is analysed for specularly and diffusely reflecting surfaces. 
In  the second case, the average temperature of the gas is found as a function of 
the wall separation for specularly reflecting surfaces. This (non-equilibrium) 
temperature is compared with that generated in the corresponding continuum 
flow which involves multiple shock wave reflexion. It is shown that, for a given 
average density gradient, the free molecule temperatures are very much higher 
than the continuum temperatures. 

1. Introduction 
The solution of the one-dimensional piston problem for a gas which may be 

treated as a continuum is well known. A shock wave is formed ahead of a piston 
moving into the gas and, if the flow is bounded by a stationary wall, the shock is 
reflected backwards and forwards between the walls. However, at such short 
times after the start of the motion that the disturbance has propagated only a 
few mean free paths, or when the wall separation becomes of the order of the 
mean free path, the continuum solution will be in error. Because of the extreme 
difficulty in analysing flows with a typical dimension of the order of the mean free 
path, it is useful to obtain an indication of the direction and magnitude of the 
rarefied gas effects by analysing the limiting case in which collisions between the 
molecules may be neglected. 

Since the flow in this free molecule limit is determined by collisions between 
the molecules and the boundaries, the nature of the interaction between the 
molecule and the boundary is all important. However, the details of the reflexion 
process vary in an often unknown manner with the nature of the surface and the 
velocity of the incident molecule, and it is necessary to treat idealized models. 
The analysis for the unbounded gas in $ 2  is carried out for the two classical 
models of specular and diffuse reflexion. Specular reflexion is an elastic process 
in which the velocity component normal to the wall is reversed and that parallel 
to the wall is retained, while a diffusely reflected molecule has its temperature 
adjusted towards that of the surface and is re-emitted in a random direction 
with a Maxwellian speed distribution. In  the case of the bounded gas, the 
emphasis is on the temperature attained by the gas and only specular reflexion 
is considered. 
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2. Unbounded gas 
The infinite plane piston is initially a t  rest and, at time t = 0, it acquires a 

velocity U in the direction normal to its face. The gas in front of the piston is 
initially stationary and in thermal equilibrium at the temperature T. It is con- 
venient to choose rectangular co-ordinates moving with the piston and with the 
x-direction normal to the plane of the piston. In  this frame of reference, the 
problem is equivalent to a plane wall being instantaneously inserted into a 
uniform stream of velocity - U.  The flow upstream of the wall corresponds to  
the compression side of the piston, and this will be affected by the molecules 
reflected from the wall and also by the absence of the molecules which would 
previously come from positions downstream of the wall. 

Now, the number flux of molecules in the x-direction with x, y and z velocity 
components in the range u to u + du, v to v + dv and w to w + dw is 

dN = nf (u, v, w) u du dv dw, (1) 

where f (u, v, w) is the velocity distribution function and n is the number density 
of the gas. Therefore, for specular reflexion, the number flux of molecules 
proceeding upstream with x velocity components in the range du due to the 
presence of the wall is 

m 

[exp { - B2[( - u + U)2 + v2 + w2]l) 

-eXP{-P2[(U+ U)'+v2+ w']}] ududvdw, 

Here, nu is the number density of the ambient molecules and ,8( = (2RT)-4) is 
the reciprocal of the most probable thermal speed of these molecules. After 
time t ,  this stream of molecules contributes to the number density at a distance x 
from the piston if x < ut (or u 2 x / t ) .  Therefore, the additional number density is. 

n-na = n,P ~ ~ x , t [ e x p { - / 3 2 ( U - u ) 2 } - e x p { - / 3 ~ ( U + u ) 2 } ] d u ,  - 
and the ratio of the total to the ambient density is 

n/n, = 1 + g[erf (/3x/t + s) - erf (/3x/t - s) ] .  (3) 

The molecular speed ratio s( = Up) is the ratio of the piston speed to the most 
probable thermal speed of the ambient molecules. The number density ratio a t  
the piston face after it has been set in motion is obtained by setting x = 0 in (3). 
That is 

nln, = 1 + erfs. (4) 

Some typical results for the case of specular reflexion are shown in figure 1. 
The corresponding result for inviscid continuum flow is a shock wave of 

constant strength propagating into the undisturbed gas (see, for example, 
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Courant & Friedrichs 1948). Table 1 gives a comparison of the density ratio 
across this shock wave with the density ratio at the face of a specularly reflecting 
piston. 
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FIGURE 1. Density distribution ahead of specularly reflecting piston. 
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1.1518 1.1134 1.0814 
1-3257 1.2337 1.1612 
2.0000 1.6210 1.3780 
3.7231 2.2546 1.6325 
9.8990 3.1070 1.8528 

33.971 3.6931 1.9562 
130.0 3.9152 1.9885 

TABLE 1 

In  the continuum flow, there is a transfer of energy between the molecular 
degrees of freedom and the result depends on the specific heat ratio y of the gas. 
The value of y has comparatively little effect at small values of s, and the con- 
tinuum density ratios for a monatomic gas (y  = $) then show a remarkable 
agreement with the collisionless values. Since the disturbance in the collisionless 
flow is confined to one velocity component and therefore to one molecular degree 
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of freedom, the collisionless result for the larger values o f  s bears some relation 
to that given by continuum theory with y = 3. For shock waves of moderate 
strength, a viscous theory for the structure of the wave during its formation has 
been given by Lighthill (1956). 

1 2 3 4 5 
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-, T1 = T ;  - - -, insulated piston. 
FIGURE 2. Density distribution ahead of diffusely reff ecting piston. 

In  the case of diffuse reflexion, the second term in equation ( 2 ) ,  which allows 
for the molecules which would have come from a point downstream of the piston 
face, remains unchanged. The new term for the reflected molecules is easily 
written down as the reflected molecules may be regarded as effusing from a 
fictitious gas of number density nf in Maxwellian equilibrium a t  a temperature T’ 
on the reverse side of the surface. That is 

d N  = n-&[nr/3’ exp { - ,8’2u2) - nap exp { - P2( U + u ) ~ } ]  u du, ( 5 )  

where p‘ = (2RT’)-*. The number density nf is given by the condition that the 
number flux of molecules leaving the surface must equal the number striking it. 
That is 

or nf = n,(P’/P) [exp ( - 82) + ds( 1 + erf s) ] .  (6) 

When (6) is substituted into ( 5 )  and a similar process to that for specular 
reflexion is carried out, the number density ratio for diffuse reflexion is 

x (1 - erf [(T/!P‘)+ ( P x / t ) ] }  - &[I - erf (Pxjt + 811. 
n/n, = 1 + +(T/T’)+ [exp ( - 82) + j.r*s(l+ erf s)] 

(7) 
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Figure 2 shows results for the case in which the temperature T' of the reflected 
molecules is equal to ambient temperature T, and also for the case in which it is 
equal to the recovery temperature of an insulated piston. The recovery tem- 
perature is given by Schaaf & Chambr6 (1958) as 

T'/T = 9(2s2 + 5 - [ 1 + &( 1 + erf s) exp s2]-1>. (8) 

For large molecular speed ratios and finite time, the number density a t  the 

(9) 
piston face is 

nln, = 1 + d ( T / T ) * s .  

It therefore increases with s when the piston temperature is equal to the ambient 
temperature, but is limited to 1 + (27r)* for the insulated piston. 

A feature of the collisionless compression is that the whole flow is affected by 
the reflexion process at  the wall and, for diffuse reflexion, by the temperature 
of the wall. The corresponding continuum flow is affected only by heat transfer 
at the wall, and these effects are confined to a thermal boundary-layer region 
adjacent to the wall. 

3. Bounded gas 
The configuration is shown in the distance-time plane in figure 3, the origin 

being chosen on the fixed wall at the instant the piston starts moving with 
velocity - U .  A convenient measure of time is the ratio 6 of the distance d 
travelled by the piston to the initial separation do of the piston and fixed wall. 

A number of molecular paths are shown in figure 3. These are all for molecules 
which are moving, at time t = 0, with the same velocity component u in the 
2-direction. It is seen that, at the time at which the piston reaches A ,  molecules 
which initially lie between x-2 and x-l have suffered one collision with the piston 
after having first collided with the fixed wall, those between x-l and x,, have not 
suffered a collision with the piston, those between xo and x1 have suffered one 
collision and those between x1 and x 2  two collisions. In general, molecules which 
initially have a velocity component u and lie between x,-~ and x, have suffered 
1.1 collisions with the piston. If x,-l or x, lie outside the range 0 to do, the limit 
on the range of x for molecules with the particular number of collisions must be 
replaced by 0 or do as appropriate. For a given n between - co and co, the magni- 
tude of the x velocity component is 

I2n U + a 1 , 
a negative n indicating that the molecule makes its first collision with the fixed 
wall. Since the reflexion is specular, the other velocity components are not 
affected by the collisions. 

If t = d /U is the time corresponding to the piston reaching the point A in 
figure 3, simple geometrical considerations show that 

do- Ut = X 0 + U t ,  

or 
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Similarly, if t' is the time at which the molecule starting at x1 strikes the moving 
wall, x1 is given by the solution of the two equations 

do - Ut' = XI + Ut', 

and 2do-d = Ut '+(u+2U)( t - t t ' ) ,  

i.e. %,/do = 3( 1 - 6) - h'(u/U). 

0 x-2 x-  1 XO XI x2 

FIGURE 3. Typical molecular paths during the compression of a bounded gas. 

Distance 

The process may be repeated indefinitely and it is seen that 

xn/do = (2n+ 1) (1-6)-S(U/U), 

and (Xn-xn-l)/do = 2(1-6). 

Therefore, when 6 2 + so that 2(1-6) 6 1, the fraction of molecules with 
x velocity component u which have suffered coIlisions with the piston is 

0 if x, < 0, 

xJd0 if x, > 0 and xnP1 < 0, 

2(1-6) if x, < do and xnP1 > 0, 

l-(xn-.l/do) if x, > do and x,-~ < do, 

0 if xn-l > 
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where n may have any value between - m and + m. Similarly, when 6 < 4 the 
fraction is 

0 if Xn < 0, 
xn/do if do > x, > 0, 

1 if x, > do and x,-~ < 0, 

1 - (xnJdo) if a, > xn-l > 0, 

0 if x,-1 > do. 

To treat one case in detail, consider the contribution AT to the temperature 
at a particular 6 (  > 8)  of the molecules such that x, > 0 and x9L-l < 0. These 
limits fix the range of u as from (2n - 1) (6-1 - 1) U to (Zn + 1) (6-1 - 1) U and the 
fraction is ( 2 n  + 1) (1 - 6)  - Su/ U .  Therefore, 

x [( 2n + 1) (1 - 6) - 6uP/s] a(@), 
where To is the equilibrium temperature of the gas before the piston starts 
moving. This integral is readily evaluated and, when the contributions of the 
other fractions are included, the final result for both 6 > and 6 < + is 

where 

and 

6 =  

$== 
P =  
Y =  

(2n+1)(6-1- l )s ,  

( 2 n -  1) (6-l- l)s ,  

[2n(S-l- 1)  - 11 s, 

[2(?2-1)(6-1-1)-1]s. 

Since ( $ - $ - p + v )  = 0, the terms in the series tend to zero as In1 .+a. 
For very large molecular speed ratios, the initial thermal velocities are 

negligible and it may be assumed that only those molecules which have suffered 
at least one collision with the piston contribute to the temperature. It can be 
seen from equation 10 (or a diagram similar to figure 3 with the molecular paths 
initially drawn vertical) that a fraction 1 - 6 of the molecules will not have 
suffered a collision, and fractions 2( 1 - 6) will have suffered 1,2,3,  . . ., n collisions, 
until the sum of all the fractions exceeds unity, when the final fraction must be 
reduced to 1 - (2n + 1)  ( 1  - 6). Therefore, since the speed of the molecule increases 
by 2U with each collision, the temperature is given by 

m 

n=O 
3RT = 8(1-8) z n2U2+4[1-(2m+l)(l-6)](m+l)~U2, (12) 
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where m is the integer below 6[2( 1 - 41-1. If the molecular speed ratio is intro- 
duced, this may be written as a temperature ratio, i.e. 

m g= E(2 (1_8)  2 n2+[1-(2m+l) ( l -6) ] (m+1)2  
3 n=O 

The ratio of the average density of the gas to its initial density a t  t = 0 is 

and figure 4 shows some curves of temperature ratio against density ratio for 
various values of s. For s = 10 and 100, the results given by equation (13) are 
indistinguishable from those given by the exact equation (11) and show that 
the ‘kinks’ in these curves occur when the number of the successive multiple 
collisions suddenly becomes appreciable. 

1 10 

Density ratio 

100 

FIGURE 4. Temperature-density behaviour of a gas undergoing one-dimensional com- 
pression. __ , Collisionless compression ; -. -. - , shock compression (y = 5 ) ;  
-_-_- , adiabatic compression (and s = 0.1 shock compression). 

Curves are also shown for the corresponding continuum flow which involves 
multiple shock reflexion (Evans & Evans 1956). These are, of course, for a 
monatomic gas (specific heat ratio y = $) and the successive shock wave 
reflexions are indicated by the heavy dots on the curves. For s = 0.1, the 
compression is almost isentropic, i.e. 

T/T, = (P/Po)-. (14) 

For larger values of s, most of the entropy increase is across the first shock and 
the slope of the curves approaches the isentropic value. 
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The collisionless compression curves always lie above the corresponding shock 
compression curves and settle down to the slope 

TITO = (P/Po)2. 

This is as expected, since the collisionless compression adds energy to only one 
degree of freedom so that the gas ultimately behaves as a perfect gas with y = 3. 
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